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Abstract

The class of autocalibrating “data-driven” parallel imaging (PI) methods has gained attention in

recent years due to its ability to achieve high quality reconstructions even under challenging

imaging conditions. The aim of this work was to perform a formal comparative study of various

data-driven reconstruction techniques to evaluate their relative merits for certain imaging

applications. A total of five different reconstruction methods are presented within a consistent

theoretical framework and experimentally compared in terms of the specific measures of

reconstruction accuracy and efficiency using one-dimensional (1D)-accelerated Cartesian datasets.

It is shown that by treating the reconstruction process as two discrete phases, a calibration phase

and a synthesis phase, the reconstruction pathway can be tailored to exploit the computational

advantages available in certain data domains. A new “split-domain” reconstruction method is

presented that performs the calibration phase in k-space (kx, ky) and the synthesis phase in a hybrid

(x, ky) space, enabling highly accurate 2D neighborhood reconstructions to be performed more

efficiently than previously possible with conventional techniques. This analysis may help guide

the selection of PI methods for a given imaging task to achieve high reconstruction accuracy at

minimal computational expense.
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Over the last decade, parallel imaging (PI) technology in MRI has progressed from early

research prototype to established clinical tool. PI accelerates data acquisition by exploiting

the spatial dependence of phased-array receiver coil sensitivity. This acceleration has been

used to satisfy a variety of imaging objectives, including reduced scan time, decreased

image artifacts, increased spatial resolution, greater volumetric coverage, or some

combination of the above, depending on the specific application.
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Many different PI techniques have been developed to date. While most methods employ the

same approach of accelerating data acquisition by using coil sensitivity encoding to

supplement gradient encoding, they differ in how they solve the reconstruction problem to

generate the final, unaliased image. Existing PI methods can be divided into two classes

based on how they model the reconstruction. The first class consists of methods that require

explicit knowledge of the coil sensitivity functions in order to separate aliased signals,

including methods such as sensitivity encoding (SENSE) (1), modified SENSE (mSENSE)

(2), simultaneous acquisition of spatial harmonics (SMASH) (3), and sensitivity profiles

from an array of coils for encoding and reconstruction in parallel (SPACE RIP) (4), among

others (5,6). We refer to this class of PI methods as “physically-based” reconstructions

because they closely model the underlying physical process that occurs during image

acquisition. However, images reconstructed with physically-based methods can suffer from

artifacts caused by inaccuracies in coil sensitivity calibration. Common sources of

calibration error include insufficient signal-to-noise ratio (SNR), Gibbs ringing, motion, or

tight field-of-view (FOV) prescription (7,8).

The second class of PI methods does not require explicit coil sensitivity information but

rather uses a data fitting approach to calculate the linear combination weights that

reconstruct output or “target” data from neighboring input or “source” data. We refer to this

second class of methods as “data-driven” reconstructions because they are based on a

limited knowledge of the underlying physical process and rely on training data to calibrate

the relationship between input and output data. This class of methods includes AUTO-

SMASH (9), variable density AUTO-SMASH (VD-AUTO-SMASH) (10), and generalized

autocalibrating partially parallel acquisitions (GRAPPA) (11), among others (12–14). Data-

driven methods such as GRAPPA that perform a coil-by-coil reconstruction offer improved

image quality over those that generate a composite-coil complex sum image such as VD-

AUTO-SMASH owing to the lack of phase cancellation effects (11). Furthermore, because

they require no sensitivity maps, coil-by-coil data-driven (CCDD) methods can be

advantageous compared to physically-based methods for situations in which accurate coil

sensitivity estimation is difficult (7).

Even among the subset of CCDD reconstructions, a variety of different methods have been

proposed. In general, CCDD reconstructions can be described as generating skipped data on

a single coil via a linear combination of neighboring data on all coils, with the linear

combination weights determined by fitting to fully sampled training data, or autocalibrating

signals (ACS). However, the particular approach used to derive and apply the weights varies

significantly from one method to another. Given the variety of CCDD reconstruction

approaches, the question arises as to how one might choose a particular method from among

these choices. The goal of this work was to perform a formal comparison of five types of

CCDD reconstruction methods to evaluate their relative merits for certain imaging

applications. A complete analysis of a given reconstruction method should consider both its

reconstruction accuracy as well as its computational efficiency. Reconstruction accuracy

plays a chief role in determining final image quality, whereas computational efficiency

impacts software and hardware requirements, total reconstruction time, and ease of

integration into routine practice. While the ideal method would optimize both parameters,

tradeoffs must sometimes be made in favor of one parameter or the other depending on the
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application. Thus all CCDD methods under consideration were compared in terms of the

specific measures of reconstruction accuracy and efficiency to identify the relevant practical

differences between methods. Based on this analysis, a flexible method is proposed for

tailoring the CCDD reconstruction pathway to exploit the computational advantages

available in certain data domains.

THEORY

This section presents the theoretical framework for five different CCDD methods evaluated

in this work, using a consistent notation to enable quantitative and qualitative comparisons.

All five reconstruction methods are assumed to share the same general acquisition scheme

shown in Fig. 1a, whereby multicoil k-space data collection is accelerated by a reduction

factor R by acquiring only every Rth phase-encode line on a Cartesian grid. (Throughout this

work, we assume data sampling on a Cartesian grid only.) A small number of ACS lines are

additionally acquired to form a fully sampled calibration region, indicated by region II in

Fig. 1a. The acquisition of calibration lines can either be embedded within the accelerated

scan itself, or performed before or after accelerated data collection. The former approach is

commonly used because it minimizes artifacts from misregistration. For purposes of this

work, the analysis is restricted to acceleration in only one dimension, although the results

could also be extended to 2D acceleration, i.e., acceleration in both phase-encoding

directions in 3D imaging.

CCDD reconstruction can be conceptually divided into two discrete processing phases: 1) a

“calibration phase,” in which the linear combination weights that fit known source data to

known target data are calculated using fully sampled calibration data as a training guide

(region II in Fig. 1a); and 2) a “synthesis phase,” in which unacquired data (region I in Fig.

1a) is synthesized from acquired data using the reconstruction weights derived in the

calibration phase. This division into two processing phases is important because the various

CCDD methods differ in their treatment of each phase. Specifically, the particular data

domain or space (i.e., k-space, hybrid-space, or image space) in which each phase occurs can

vary from one CCDD method to the next, leading to differences in reconstruction accuracy

and efficiency. The five types of CCDD reconstructions analyzed in this work are

summarized as follows:

• Method 1: k-Space-based 1D neighborhood CCDD reconstruction

• Method 2: Hybrid-space-based CCDD reconstruction, including three different

calibration schemes:

Calibration A: independent calibration

Calibration B: segmented calibration

Calibration C: smoothly varying calibration

• Method 3: k-Space-based 2D neighborhood reconstruction

• Method 4: k-Space-calibration, image-space synthesis CCDD reconstruction

• Method 5: k-Space calibration, hybrid-space synthesis CCDD reconstruction
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For each method, the general reconstruction model is first presented, followed by details of

calibration and synthesis phase calculation. An estimate of computational expense is

calculated as the number of basic operations needed to perform the dominant or “rate-

limiting” step in each reconstruction phase.1 For simplicity, we chose to define a basic unit

of operation as a single complex-valued multiplication. Measuring computational efficiency

in terms of operations rather than computation time allowed us to compare methods strictly

on the basis of computational complexity and avoid dependencies on system-specific

variables such as computer platform, compiler, coding routines, etc. Furthermore, expressing

computational cost as a function of imaging and reconstruction variables helps predict how

the computation scales as those parameters are varied. The computational expense

calculation included all CCDD reconstruction steps required to convert an initial accelerated

dataset into a final unaliased dataset, including the calibration phase, weight conversion (if

necessary), and synthesis phase. However, the cost associated with performing the two 1D

Fourier transforms (FT) (one in kx, one in ky) necessary to transform k-space data into image

space, as well as the cost to perform coil combination or any other subsequent data

processing steps, were excluded since all reconstructions were assumed to share these steps

in common. A validation of the theoretical computational expense estimates is deferred to a

later section.

Method 1: k-Space-Based 1D-Neighborhood CCDD Reconstruction

The original CCDD reconstruction, GRAPPA (11), was formulated as a 1D-neighborhood

reconstruction performed entirely in k-space. The underlying assumption of GRAPPA is that

every k-space data point on a single coil can be represented as a linear combination of its

neighbors on all coils and that the set of linear combination weights is shift invariant in k-

space. The signal  at each skipped k-space location from coil n was modeled as follows

(adapted from Griswold et al. (11)):

(1)

where R is the acceleration factor, r is the phase-encode offset from an acquired reference

line to an unacquired line (r = 1, … , R − 1), Δky is the distance from one phase-encode line

to the next, index j counts through Nc individual coils, and index τy spans dy acquired points

within a local 1D neighborhood along the ky direction. Wn,r,j(τy) represents the weight

applied to acquired k-space data at phase-encode offset location τyR on coil j to reconstruct

data at phase-encode offset location r on coil n. The local 1D neighborhood has width Dy

(Dy = (dy − 1)*R + 1) and can either be centered symmetrically about the missing data point

or shifted asymmetrically to one side. Throughout this work, a single, symmetric

neighborhood is assumed (as opposed to a sliding block reconstruction (11) or other

asymmetric neighborhood formulation). An illustration of the 1D neighborhood weights for

Method 1 is shown in Fig. 1b.

We can rewrite the reconstruction model in Eq. [1] in compact matrix form as follows:

1This measure is akin to the “big O” notation used in computer science to describe the asymptotic upper bound of algorithmic
complexity.
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(2)

where  contains the synthesized data generated by linearly combining the acquired data

points in Sacq with the reconstruction weights in W. Whereas the summation formulation in

Eq. [1] describes only the synthesis of a single data point at a particular phase-encode offset

location r on coil n, the matrix formulation in Eq. [2] can conveniently be written to

encompass the synthesis of all R − 1 phase-encode offset locations on all Nc coils. The

matrix assembly procedures are described in detail below.

Calibration—The weight matrix W used in the reconstruction must be derived during an

initial calibration phase by finding a solution to the linear system

(3)

where the matrices Ssrc and Stgt are comprised of known source and target data,

respectively, taken from the fully sampled calibration region. The weights in W can be

found to minimize the error ε1 in the fit between source and target data as follows:

(4)

where ∥·∦2 denotes the L2 norm. The position of source points with respect to target points

matches the sampling pattern encountered in the accelerated regions of k-space. For each of

Nt available target points in the calibration region, the corresponding dy source points that

fall within the local 1D neighborhood of width Dy along the ky direction are identified on all

coils and assembled into a row of Ssrc. The target points for a given coil and phase-encode

offset location are assembled into a column of Stgt. Thus matrix Ssrc has dimension [Nt ×

dyNc], matrix Stgt has dimension [Nt × (R − 1)Nc], and matrix W has dimension [dyNc × (R −

1)Nc].

The total number of target points Nt represents the number of training examples for the

reconstruction. Generally, the greater the number of training examples, the more accurate

the fitting process becomes in the presence of noise (10). Furthermore, even in the absence

of noise, additional training examples can allow improved characterization of how the coil

sensitivity functions relate to the local neighborhood. The acquisition of multiple ACS lines,

originally proposed in Ref. 10, serves to increase the number of available target points at the

expense of acquisition efficiency. A “floating net” calibration approach, as defined in Ref.

13, can also be used to take full advantage of all available target points along ky. In addition,

since the reconstruction is shift invariant, the calibration can be performed at all Nx locations

along the kx direction (15), further increasing Nt; we refer to such a calibration strategy as

“full-width readout calibration.” Fewer than Nx samples could be used to reduce

computation time, but for this work, full-width readout calibration is assumed. If we define

Nf as the number of possible fit locations along the phase-encode direction, then the total

number of target points Nt equals NfNx, a number that can easily exceed several thousand for

typical scan parameters. As a result, the linear system to be solved is highly overdetermined

(Nt ⪢ dyNc). Thus W can be calculated using a least-squares fitting approach:
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(5)

where + denotes the pseudoinverse and H the conjugate transpose. When Nt is large,

performing the series of matrix multiplications specified in Eq. [5] can require a substantial

number of computations. By taking advantage of the associative property of matrix

multiplication, we can rewrite Eq. [5] as

(6)

which simplifies the computation by removing the Nt dimension from the product . It

can be shown that the dominant calibration cost of Method 1 is the calculation of ,

which requires NfNx(Ncdy)2 complex-valued multiplications.

Synthesis—In the synthesis phase, the missing data is synthesized according to Eq. [2],

where each row of matrix Sacq contains the acquired points within a local 1D neighborhood

about a given unacquired point on all coils, each column of matrix W contains the

precalculated weights, and each column of matrix Sacq consists of Ns total points to be

synthesized for a given coil (Ns = NuNx, where Nu is the number of phase-encode lines to be

synthesized at a particular phase-encode offset location). Thus matrix Sacq has dimension

[NuNx × dyNc], matrix Ssyn has dimension [NuNx × (R − 1)Nc], and matrix W has dimension

[dyNc × (R − 1)Nc]. Accordingly, the cost to synthesize Nc complete k-space datasets is

dyNuNxN2
c(R − 1) multiplications. If desired, the ACS lines can be retained in the final

datasets for improved image quality and SNR (10,11).

From the foregoing description, it can be seen that both the training and synthesis phases of

Method 1 are performed in k-space. Thus, GRAPPA has historically been referred to as a “k-

space reconstruction.” However, it should be noted that due to system linearity and Fourier

transform separability, Method 1 can equivalently be performed in a hybrid (x, ky) space into

which data has been transformed via 1D FT along kx (FTkx):

(7)

where S′ denotes the acquired signal transformed into hybrid (x, ky) space. Otherwise all

steps in the calibration and synthesis phases would remain the same as described above. For

a 1D neighborhood CCDD reconstruction, the weights Wn,r,j(τy) will be the same in either

(kx, ky) space or in hybrid (x, ky) space because they have no dependency on the transformed

direction. While there is no reconstruction accuracy or efficiency advantage to performing

Method 1 in hybrid-space, it is mentioned here for completeness. More sophisticated hybrid-

space reconstruction methods that model x-position dependency are described in the next

section.
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Method 2: Hybrid-Space-Based CCDD Reconstruction

More recent studies have formulated the entire CCDD reconstruction not in (kx, ky) space

but rather in hybrid (x, ky) space. These hybrid-space techniques model the reconstruction

as:

(8)

where W′n,r,j(x,τy) denotes the hybrid-space reconstruction weights, which now contain a

dependency on x. In this case, a unique set of linear combination weights exists at each x-

location, as shown in Fig. 1c. By allowing variable reconstruction weights along the x-

direction, this hybrid-space formulation can offer better system conditioning and image

quality compared to Method 1. The synthesis and calibration phases for Method 2 can

similarly be written in the compact matrix form of Eqs. [2] and [3], respectively, except with

the signal and weight matrices composed of data in hybrid-space.

A number of different calibration strategies have been presented for generating hybrid-space

reconstruction weights with x-dependency. Three of these calibration strategies are

described below.

Calibration A: Independent Calibration—One calibration option is to calculate a

unique set of reconstruction weights independently for each x-location (16). In this case, the

number of target points Nt is limited to Nf, the number of fit locations at a single x-position,

which generally results in an underdetermined (Nf < dyNc), critically determined (Nf = dyNc),

or only slightly overdetermined (Nf > dyNc) problem, which in practice can lead to poor

quality reconstructions. Although it is possible to increase the number of ACS lines to

improve system determination, this reduces net acceleration. Using this “independent

calibration” approach, a weight matrix W of size [dyNc × (R − 1)Nc] can be calculated for

each x-location using Eq. [5] (which is now more efficient than Eq. [6] because Nt is small),

with matrix Ssrc of size [Nf × dyNc] and matrix Stgt of size [Nf × (R−1)Nc]. The estimated

cost to perform this calibration requires NfNx(Ncdy)2 multiplications to compute SH
srcSsrc a

total of Nx times, not to mention Nx matrix inversions—one for every x-location. For the

purpose of this work, it suffices to say that the computational cost for this approach is

greater than for Method 1.

Calibration B: Segmented Calibration—Another method for generating hybrid-space

weights that has been mentioned in the literature (17–19) divides the x-direction into Nseg

segments over which the reconstruction weights are assumed to remain constant, improving

system determination by increasing the number of training examples by the width of the

segment (Nt = NfNx/Nseg). The basic assumption is that coil sensitivity varies slowly in the

spatial domain (i.e., over the x-direction) and therefore reconstruction weights can be

approximated as having fixed values over discrete segments along this axis. Using this

“segmented calibration” scheme, we can write the hybrid-space weights in Eq. [8] as

(9)
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where:

indicating an even step-wise weight variation over x. Another version of segmented

calibration uses overlapping segments followed by interpolation of weights between

segments (19).

A weight matrix W of size [dyNc × (R − 1)Nc] can be calculated for each segment using

either Eq. [5] or [6] (the more computationally efficient choice will depend on the size of

Nt), where matrix Ssrc has dimension [NfNx/Nseg × dyNc] and matrix Stgt has dimension

[NfNx/Nseg × (R−1)Nc]. In either case, the computation required for segmented calibration

will again be at least as great as that reported for Method 1, requiring NfNx(Ncdy)2

multiplications to compute SH
srcSsrc a total of Nseg times, as well as Nseg matrix inversions.

Calibration C: Smoothly Varying Calibration—A third hybrid-space calibration

method has been shown to improve upon the accuracy of both independent and segmented

calibration by modeling the weights as smoothly varying functions of x (14,19). Rather than

estimating the weights independently over discrete segments, “smoothly varying

calibration” considers all data along x simultaneously and relates the weights to one another

with continuous weight functions. Smoothly varying hybrid-space weights can be modeled

as a linear combination of Norder terms of a basis function, as follows:

(10)

where  represents the coefficient for the cxth term (cx = 0,… Norder) of basis

function f(x,cx). A variety of basis functions could be used. As described in Skare and

Bammer (14), smoothly varying weight functions can be represented in compact matrix

form:

(11)

where Q is the fixed and sparse basis set matrix of size [dyNxNc × NcdyNorder], H is the

coefficient matrix of size [NcdyNorder × (R − 1)Nc], and W’ is the weight matrix of size

[dyNxNc × (R − 1)Nc]. In the calibration phase, rather than calculating the weights W’

directly, the basis function coefficient matrix H is derived by finding a solution to the linear

system

(12)

The solution that minimizes the error ε2 can be found by evaluating the following least-

squares expression:
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(13)

where the sparse matrices Ssrc and Stgt are comprised of hybrid-space source and target data

and have sizes [NfNx × dyNxNc] and [NfNx × (R−1)Nc], respectively.

The dominant term in evaluating Eq. [13] is the multiplication of (SsrcQ)H by (SsrcQ), which

requires NfNx-(NcdyNorder)2 multiplications—a factor of Norder
2 more computations than the

corresponding step for Method 1. To this one must add the cost of calculating both the

product SsrcQ as well as the product QH to find the final weight matrix W’ in Eq. [11].

Although these steps can be performed fairly efficiently due to matrix sparsity, they

nevertheless add extra complexity to calibration phase computation.

Synthesis—No matter what calibration method is used, the application of the weights in

the synthesis phase is similar for all for hybrid-space methods. Synthesis can be performed

by evaluating the matrix expression in Eq. [2] for each x-location, where each row of matrix

Sacq contains the acquired hybrid-space data from all coils within a local 1D neighborhood

of an unacquired point, and each column of matrix W contains the precalculated hybrid-

space weights for that x-location. Thus matrix Sacq has dimension [Nu × dyNc] and matrix W
has dimension [dyNc × (R − 1)Nc]. (W’ in Calibration C can be recast into Nx matrices of

dimension [dyNc × (R − 1)Nc] to take the form of W.) Accordingly, the cost to synthesize Nc

complete hybrid-space datasets is dyNuNxN2
c(R − 1), which is the same computation

required for the synthesis step for Method 1. The ACS lines can be retained in the final

hybrid-space datasets for improved image quality and SNR.

Method 3: k-Space-Based 2D-Neighborhood CCDD Reconstruction

Several authors have demonstrated a variation on k-space-based CCDD reconstruction

whereby the local neighborhood is expanded to 2D to include data along both the phase- and

frequency-encode directions (12,13,20,21). Extending the formulation in Eq. [1], the signalŜ
at each skipped k-space location from coil n can be written as a linear combination of

neighboring acquired data along the kx and ky directions from all coils:

(14)

where the reconstruction weights Wn,r,j(τx,τy) contain an additional dependence on position

index τx, which spans dx acquired points along the kx direction. A graphical illustration of

2D neighborhood k-space weights is shown in Fig. 1d. As before, Eq. [14] can be rewritten

in the compact matrix form of Eq. [2], where Sacq now consists of the acquired data within

the local 2D neighborhood that when linearly combined using the weights in W will

synthesize data in Ŝsyn.

Calibration—During the calibration phase, the reconstruction weights in matrix W are

found by solving Eq. [4], where the matrices Ssrc and Stgt are comprised of source and target

k-space data, respectively. For each possible target point location in the calibration region,
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the corresponding dxdy source points that fall within the local 2D neighborhood of width [dx

× Dy] are identified on all coils and assembled into a row of Ssrc. The target points for a

given coil are assembled into a column of Stgt. Thus matrix Ssrc has dimension [NfNx ×

dxdyNc] and matrix Stgt has dimension [NfNx × (R − 1)Nc].

While the number of unknown weights in Method 3 is greater than in Method 1 owing to the

inclusion of source data along the kx dimension, the system is still typically overdetermined

(Nt ⪢ dxdyNc), especially if full-width readout calibration is used. Thus the reconstruction

weights W can be calculated using Eq. [6]. In this case, the dominant term in evaluating Eq.

[6] is the computation of SH
srcSsrc, which requires NfNx(Ncdxdy)2 complex-valued

multiplications, or dx
2 times more computations than the same step in Method 1.

Synthesis—In the synthesis phase, the missing k-space data are synthesized from local

acquired data by evaluating Eq. [2], where each row of matrix Sacq is comprised of acquired

points within a local 2D neighborhood about a given unacquired point on all coils, and

matrix W contains the precalculated weights. Thus matrix Sacq has dimension [NuNx ×

dxdyNc] and matrix W has dimension [dxdyNc × (R − 1)Nc]. Accordingly, the cost to

synthesize Nc complete k-space datasets is dxdyNuNxNc
2(R − 1), or dx × more computations

than the synthesis step in Methods 1 or 2. The ACS lines can be retained in the final k-space

datasets.

Method 4: k-Space Calibration, Image-Space Synthesis CCDD Reconstruction

All of the foregoing CCDD reconstruction methods perform both the calibration and

synthesis phases in the same data space: Methods 1 and 3 were entirely performed in k-

space, while Method 2 was performed entirely in hybrid-space. We now turn our attention to

“split-domain” approaches that perform the calibration and synthesis phases in different data

domains.

Several authors have noted that k-space-based CCDD reconstructions can be viewed as

convolution operations (15,18,20,22). The 2D-neighborhood k-space reconstruction model

used in Eq. [14] can be reformulated as the following discrete 2D convolution sum (23):

(15)

where  is a 2D k-space convolution kernel with indices Ωx and Ωy spanning a

2D neighborhood of size [dx × Dy]. The convolution kernel  can be formed

from the reconstruction weights Wn,r,j(τx,τy) from Eq. [14] by filling zeroes in the

appropriate unacquired locations to match the accelerated sampling pattern. In addition, for

the set of kernels for which the source and target data are on the same coil (i.e., j = n), the

weight at the synthesis location should be set to 1 for the convolution to retain the original k-

space lines for that coil. The 2D convolution operation assumes that S is uniformly sampled

in both the kx and ky directions, a condition that can be achieved by ensuring the ACS lines

are removed from S prior to data synthesis.
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As previously mentioned (18,20), expressing the reconstruction as a convolution allows one

to easily extend the CCDD technique from k-space to image-space. According to Fourier

theory (23), Eq. [15] can be converted into image-space via 2D FT as follows:

(16)

where w is the set of weights obtained by centering and zero-padding the k-space

convolution kernel W̃ up to size [Nx × Ny] and performing a 2DFT, and s is the aliased image

of size [Nx × Ny], obtained by zero-filling the unacquired k-space points in S and performing

a 2DFT. While performing a multiplication in image space is mathematically equivalent to a

2D convolution in k-space (assuming circular convolution is employed at the k-space

boundaries), it can offer computational advantages because a point-by-point multiplication is

more efficient than a 2D convolution, as enumerated below. A diagram of image-based

reconstruction weights derived from 2D k-space weights is shown in Fig. 1e.

Calibration—Because the calibration phase for Method 4 is performed in k-space, the

estimated cost for the calculation of k-space weights is identical to Method 3 (assuming a 2D

kernel neighborhood is used), namely NfNx(Ncdxdy)2 complex-valued multiplications.

However, one must also include the nontrivial additional cost of converting the k-space

weights to image-space: after zero-padding to size [Ny × Nx], two fast Fourier transforms

(FFTs) can be performed (each of order NlogN), requiring a total of (logNx + logNy)NxNyNc
2

operations for all coils.

Synthesis—The synthesis phase of Method 4 consists of performing the point-by-point

multiplication in Eq. [16] for each coil n and phase-encode offset r, requiring a total of

NxNyNc
2(R − 1) multiplications to reconstruct Nc individual coil images. A primary

disadvantage of image-space synthesis is the requirement that acquired data be uniformly

undersampled, precluding the reconstruction of nonuniform sampling patterns (for example,

if different integer acceleration factors are used in different k-space regions) and

necessitating the removal of ACS lines prior to image-space synthesis.

Method 5: k-Space Calibration, Hybrid-Space Synthesis CCDD Reconstruction

With Method 5, we introduce a split-domain approach that improves upon the computational

efficiency of Method 3 while preserving its flexibility to reconstruct non-uniform sampling

patterns (24). Returning to the 2D k-space reconstruction model of Method 3, we perform a

1D FT along the fully sampled kx-direction to transform Eq. [14] into hybrid (x, ky) space:

(17)

which can be shown to reduce to:
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(18)

where

(19)

Equations [17]–[19] imply that 2D reconstruction weights Wn,r,j(τx,τy) can be found in k-

space, zero-padded in kx and 1D Fourier transformed into hybrid-space, then applied to

accelerated data that has similarly been transformed into hybrid-space. A diagram of hybrid-

space weights derived from 2D k-space weights in this manner is shown in Fig. 1f. While

performing data synthesis as a 1D linear combination in hybrid-space is mathematically

equivalent to performing a 2D linear combination in k-space (assuming circular k-space

boundary conditions are employed), it offers computational advantages owing to the

reduction in neighborhood dimension. Moreover, unlike Method 4, since the phase-encode

direction remains in ky-space, the ACS lines can be retained in the final hybrid-space

dataset.

One may note that the hybrid-space synthesis equation of Method 5 (Eq. [18]) is identical to

that of Method 2 (Eq. [8]). The two methods differ in how they arrive at the hybrid-space

reconstruction weights: Method 2 calculates the reconstruction weights in hybrid-space

using one of several calibration strategies, whereas Method 5 calculates 2D weights in k-

space and then transforms them into hybrid-space via 1DFT. As described in Eq. [10], when

the calibration strategy of Method 2C is used, the hybrid-space weights are modeled with a

basis function f to enforce smoothly varying weights over x. Comparing that equation with

the hybrid-space weight derivation used in Eq. [19], it becomes apparent that these two

equations take very similar forms. In fact, if a complex exponential basis function is used for

f (as proposed in (19)), and Wn,r,j(τx,τy) and cx span the same number of terms, then the two

equations are equivalent. From this perspective, solving for the 2D neighborhood weights

Wn,r,j(τx,τy) in k-space can be viewed as finding the complex Fourier series coefficients that

generate a smoothly varying weight function in hybrid-space, and vice versa.

Calibration—The theoretical cost to calculate 2D neighborhood k-space weights for

Method 5 is NfNx(Ncdxdy)2 multiplications, identical to that of Method 3. After zero-padding

to size [dy × Nx], the additional cost of converting the k-space weights to hybrid-space via

1D FFT along the x dimension amounts to (NxlogNx)dyNc
2 operations.

Synthesis—The synthesis phase for Method 5 is identical to Method 2, requiring

dyNuNxNc
2(R − 1) multiplications to synthesize Nc hybrid-space datasets. The fully sampled

ACS lines can be retained in the final hybrid-space dataset.
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METHODS

Reconstruction Accuracy Measurements

A series of experiments were performed to compare the reconstruction accuracy of CCDD

methods. Because reconstruction performance depends on several factors such as coil

geometry, subject, and acceleration factor, we performed phantom and in vivo experiments

using two different imaging configurations. First, a 2D fast spin echo axial dataset of a brain

phantom (Hoffman 3-D Brain Phantom™, Data Spectrum, Chapel Hill, NC, USA) was

acquired on a 1.5T Signa HD scanner (GE Healthcare, Waukesha, WI, USA) using an eight-

channel head coil (MRI Devices, Pewaukee, WI, USA) (eight-coil elements arranged

circularly about a cylinder) with the following imaging parameters: TE/TR = 13 ms/400 ms,

FOV = 21 cm, bandwidth (BW) =±16 kHz, slice thickness = 4 mm, 240 × 240 pixels. The

phantom dataset was retrospectively downsampled by a reduction factor of R = 3, and ACS

lines at the k-space center were retained for a fully sampled calibration region spanning 20

phase-encode lines.

Next, an axial 3D fat-suppressed gradient echo volunteer abdominal dataset was acquired

using an eight-channel torso array coil (GE Healthcare) (2 × 2 anterior coil elements and 2 ×

2 posterior elements) with the following imaging parameters: TE/TR = 2.2 ms/4.6 ms, FOV

= 36 cm, BW = ±62 kHz, slice thickness = 3 mm, matrix size = 320 × 256 × 60. This dataset

was retrospectively downsampled by R = 2 in the phase-encode direction and included a

fully sampled central region spanning 20 phase-encode lines. Volunteer scanning was

approved by our Institutional Review Board and was performed with informed consent.

CCDD Methods 1 through 5, including all three calibration variations for Method 2, were

implemented in Matlab 7.0 (The Mathworks, Inc, Natick, MA, USA) and used to reconstruct

both datasets according to the details in the Theory section, with floating net calibration in

ky, full-width readout calibration in kx (where applicable), and a single, symmetric

neighborhood about the target point with two neighbors in the ky direction (dy = 2). For 2D

neighborhood k-space calibration, a neighborhood width of five was used in the kx direction

(dx = 5); for segmented hybrid-space calibration (Method 2B), eight independent,

nonoverlapping segments were used along the x-direction (Nseg = 8); for smoothly varying

hybrid-space calibration (Method 2C), the weights over x were modeled according to Eq.

[10] using the following cosine basis function:

(20)

Where applicable, circular boundary conditions were assumed at the edges of k-space. For

each dataset, the same number of ACS lines was used with all methods to compare

reconstruction results based on equivalent net acceleration. For Method 4, the ACS lines

were necessarily removed prior to image-based synthesis to achieve a uniform sampling

pattern. Thus to enable a fair comparison among different CCDD methods, the ACS lines

were similarly removed from all datasets prior to synthesis.
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An accelerated coil-combined image was reconstructed for each CCDD method, and a

reconstruction error image was calculated as the magnitude of the difference between the

unaccelerated reference image and the accelerated image. In an attempt to quantify the

reconstruction performance of each method, a net reconstruction error was calculated as the

relative root mean squared (RRMS) error between the unaccelerated and accelerated image,

normalized by the signal intensity of the reference image, as used in previous work (25,26):

(21)

where M is the total number of pixels in the image, Ireference is the reference image, and

Irecon is the reconstructed image.

Reconstruction Efficiency Measurement

To experimentally validate the theoretical computational expense estimates reported in the

Theory section, measurements of actual computation times were compared for a subset of

CCDD methods. Because of the considerable computational overhead associated with

interpreted software languages such as Matlab, it can be difficult to obtain accurate timing

results. Therefore, we chose to measure computation times using C, a compiled

programming language, on a 32-bit 2.8-GHz Linux workstation equipped with 2 GB of

random access memory (RAM), without any code parallelization.

A 1D-accelerated spoiled gradient echo phantom dataset was acquired using the same

experimental setup as the brain phantom with an acceleration factor of R = 3. For this timing

experiment, a dataset with 124 slice locations was acquired to reduce bias due to inter-slice

processing time variability. The accelerated dataset was reconstructed using Methods 3 and

5 with a kx neighborhood width that varied from 1 to 9. In each case, the computation time

required to reconstruct all 124 slices was measured and an average computation time per

slice was calculated.

RESULTS

Reconstruction Accuracy Measurements

The first set of reconstruction accuracy results are demonstrated in Fig. 2, which compares

accelerated brain phantom images (R = 3) acquired with the eight-channel brain coil

reconstructed using the five different CCDD methods. Reconstructed images are shown in

the left column, and reconstruction error images are shown in the right column (window/

level decreased by 10×). The phase-encoding direction was horizontal. The edge of the brain

phantom is visible in the MR images as a bright ring around the object, providing a

convenient marker for the edges of the FOV and the areas of signal overlap.

Considerable reconstruction error was seen using Method 1 (first row). Residual aliasing is

visible in both the reconstructed image (Fig. 2a) and the error image (Fig. 2f), and the

RRMS error is relatively large (0.1261). The independent calibration approach of Method
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2A (second row) offers somewhat reduced residual aliasing, but numerous horizontal noise

streaks appear across both the reconstructed image (Fig. 2b) and the error image (Fig. 2g),

resulting in a high RRMS error (0.1283). In this case, the system is just slightly

overdetermined and thus vulnerable to noise in the calibration data, causing the

reconstruction weights to become disproportionately large for some x-locations and leading

to the streaks seen here. Image quality is somewhat improved with Method 2B (third row),

where hybrid-space calibration is performed over eight independent segments along the x-

direction. Coherent residual aliasing is diminished, as seen in Figs. 3c, but a significant

amount of noise remains in the error image (Fig. 2h; RRMS error = 0.0416). Moreover, the

noise in Fig. 2h exhibits discontinuities at the junctions between segments along the vertical

x-direction, caused by the independent calculation of reconstruction weights within each

segment.

Using the smoothly varying hybrid-space calibration model of Method 2C (fourth row),

reconstructed image quality is considerably improved (Fig. 2d), with minimal residual

aliasing and noise in the error image (Fig. 2i) and low RRMS error (0.0187). The number of

cosine basis function terms for Method 2C was chosen such that image quality matched that

of Methods 3–5 as closely as possible, resulting in Norder = 6. The last row of Fig. 2 shows

the results from Methods 3–5, which share the same calibration step of calculating 2D

neighborhood reconstruction weights in k-space, but differ in the data space in which the

synthesis step is performed. As expected from theory, the reconstructed images were

identical for Methods 3–5 (within the limits of machine precision), thus only one image is

displayed here (Fig. 2e). All three methods produced high quality images with minimal

residual aliasing and noise (Fig. 2j) and low RRMS error (0.0188).

Figure 3 compares the CCDD reconstruction results from a single slice of the accelerated in

vivo abdominal dataset (R = 2) acquired with the eight-channel torso array coil.

Reconstructed images are shown in the left column, and corresponding reconstruction error

images are shown in the right column (window/level decreased by 5×). Phase-encoding was

performed in the vertical direction. Method 1 demonstrated residual aliasing artifacts in the

reconstruction error image (Fig. 3f), particularly near the anterior chest wall (RRMS error =

0.0709), while Method 2A caused prominent vertical streaks in both the reconstructed image

(Fig. 3b) and the error image (Fig. 3g; RRMS error = 0.1826). Methods 2B, 2C, and 3–5 all

performed comparably well, with minimal residual aliasing or noise in the error images

(Figs. 3h–j; RRMS error = 0.0597, 0.0571, and 0.0575, respectively). In this case, the

number of cosine basis function terms for Method 2C, or Norder, was chosen to be 5 to

match Methods 3–5 as closely as possible.

To compare the spatial variation of the reconstruction weights generated using various

methods, a representative weight from the brain phantom dataset for a particular source coil,

target coil, phase-encode offset, and ky offset is plotted for all methods as a function of x-

location in Fig. 4. Method 1 weights demonstrate a flat profile with no dependence on x

since the 1D neighborhood reconstruction model does not account for spatial variation over

this dimension. Method 2A weights fluctuate wildly with each increment in x due to

independent calibration at each location. Method 2B weights display a stepped profile across

eight segments over x owing to the independent weight calculation for each segment.
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Method 2C weights, calculated using the smoothly varying calibration method, demonstrate

a continuous, slowly varying profile. Method 5 weights, found by calculating 2D

neighborhood reconstruction weights in k-space and transforming them into hybrid-space,

similarly display a smoothly varying spatial profile, with slight deviations from Method 2C

due to the use of different basis functions of different order. Note that the weights calculated

for Methods 3 and 4 would have identical profiles to Method 5 if transformed into hybrid-

space since they are calculated using the same calibration procedure.

Reconstruction Efficiency Measurements

Generalized formulas estimating the number of complex-valued multiplications required for

each phase of CCDD reconstruction were given in the Theory section and are summarized in

Table 1. To provide a more intuitive sense of the magnitude of these values, numerical

examples of computation expense are also reported, found by evaluating the generalized

expressions using the following parameters: dx = 5, dy = 2, Nc = 8, Nx = 240, Ny = 240, Nu =

80, Nf = 20, Norder = 5, and R = 3. These numerical values are provided merely as examples;

each imaging situation may require a different set of parameters that can alter the relative

computational expense of these methods. Thus the generalized formulas should be consulted

to predict the approximate computational cost for a particular set of parameters.

It is clear from Table 1 that Method 1 has the most efficient calibration phase, requiring only

NfNx(Ncdy)2 multiplications. As the dimensionality of the reconstruction model increases to

account for 2D coil sensitivity variation, the computational expense increases significantly.

For example, calculating smoothly varying hybrid-space reconstruction weights using

Method 2C requires over NfNx(NcdxNorder)2 multiplications, a factor of at least Norder
2 more

than the same phase for Method 1. Although the computational expense of the calibration

phase increases from Method 1 to Method 2C, the synthesis phase cost remains constant

because in each case a 1D linear combination requiring dyNuNxNc
2(R − 1) operations is

performed, no matter whether the synthesis is performed in hybrid-space or k-space.

On the other hand, Methods 3–5 all share the same calibration phase expense to calculate 2D

linear combination weights in k-space, requiring NfNx(Ncdxdy)2 multiplications each, but

differ in their synthesis phase efficiency. Performing a 2D linear combination in k-space

using Method 3 requires dxdyNuNxNc
2 (R − 1) multiplications, or ~25 million operations in

our example, whereas a 1D linear combination in hybrid-space using Method 5 requires only

dyNuNxNc
2 (R − 1) multiplications, or ~5 million operations—a computational savings factor

of dx (the width of the 2D neighborhood along the kx-direction). Performing a point-by-point

multiplication in image-space with Method 4 also offers computational savings over Method

3, requiring NxNyNc
2 (R − 1) multiplications—a factor of dxdyNu/Ny fewer multiplications

than synthesis in k-space. However, the computation required to convert the reconstruction

weights from k-space into hybrid-space or image-space should also be considered for a

complete assessment of computational burden. The weight conversion to image-space

requires a considerable (logNx + logNy)NxNyNc
2(R − 1) operations (assuming two FFTs are

used). In our example, this conversion amounts to over 35 million extra multiplications—

more than the cost of simply applying the weights in k-space. Though it is possible to

achieve roughly a two-fold conversion efficiency improvement by interleaving the zero-
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padding and FFT operations, this conversion step still remains quite costly. On the other

hand, the weight conversion to hybrid-space in Method 5 requires only (NxlogNx)dyNc
2(R −

1) operations, or 146,240 operations in this example, a trivial expense by comparison.

The reconstruction accuracy results in Figs. 2 and 3 combined with the computational

efficiency estimates in Table 1 emphasize an important trend observed in CCDD

reconstruction: the better the image quality, the more computationally demanding the

reconstruction. Methods 1, 2A, and 2B were relatively efficient but tended to be less

accurate, whereas Methods 2C and 3–5 were less efficient but more accurate by comparison.

The remainder of the analysis was thus focused on the latter group of methods in order to

compare the relative efficiency of the most accurate reconstruction methods. According to

our computational expense predictions, Method 3 was expected to be the least efficient

method with its demanding calibration and synthesis phases, while Method 5 was expected

to be most efficient due to its efficient weight conversion and synthesis. To validate the

expected improvement in reconstruction speed of Method 5 over Method 3, actual measured

reconstruction times for both methods were measured using the 124-slice phantom dataset.

In Fig. 5a, the average reconstruction time per slice, including the calibration, weight

conversion, and synthesis phases, is plotted as a function of dx for each method. As expected

from theory, the reconstruction times for Methods 3 and 5 were convex functions of dx. For

dx values greater than 1, Method 5 offered about a 40% reduction in total reconstruction

time compared to Method 3.

To isolate the source of the computational efficiency improvement, the average time

required to perform only the conversion and synthesis phase for each slice is plotted in Fig.

5b as a function of dx. In this case, the data for Method 3 was shown to perfectly fit a linear

equation with a slope of 0.048 (with a small intercept value), indicating that the variable

synthesis phase cost scaled proportionally with dx, as predicted in Table 1. On the other

hand, the computation time for Method 5 remained fixed at 0.051 s per slice for all dx values

because data synthesis was efficiently performed as a 1D linear combination in hybrid-

space, eliminating the dependence on dx altogether. Using this data, the anticipated synthesis

phase computational advantage of Method 5 over Method 3 was confirmed to be roughly dx

in practice.

DISCUSSION

By treating CCDD reconstruction as two distinct phases and separately analyzing the

computational expense of each phase, the most computationally intensive steps can easily be

identified. This knowledge allows one to tailor the reconstruction pathway for a given

application to exploit the computational advantages available in certain data domains. Fig. 6

presents a flowchart of various CCDD reconstruction methods described in this work,

illustrating the possible processing pathways from accelerated input data to reconstructed

output data. The data domains are indicated along the vertical direction and the

reconstruction phases progress from left to right. All processing steps that are shared among

all methods, such as the two 1D FTs required to convert k-space data to image-space data,

are ignored in this figure; only steps imposing unique computational requirements are

shown. The estimated computational expense for each step is indicated within each
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processing block, using the numerical examples from Table 1. The net reconstruction cost

for a given pathway can be calculated by summing the expenses over all steps.

The central horizontal pathway in Fig. 6, labeled Method 3, represents the conventional,

computationally intensive approach of performing the entire reconstruction in k-space.

Alternatively, the reconstruction can be performed entirely in hybrid-space, as indicated by

the top horizontal pathway labeled Method 2C, which requires a slightly more intensive

calibration phase but offers a more efficient synthesis phase than Method 3. Another option

is to use a split-domain approach. For example, the thick downward array illustrates the

Method 4 pathway, whereby calibration is performed in k-space and synthesis is performed

efficiently image-space, with a costly weight conversion step in between. For reconstruction

of a single image, Method 4 may not be preferable over Method 3 due to the former

method’s computationally demanding weight conversion step and uniform undersampling

requirement. For reconstruction of multiple images in a time series, however, Method 4

becomes a more attractive option because ACS lines can be acquired once (or intermittently)

during a scan and then applied to multiple subsequent images acquired with full

acceleration. In that case, the computationally intensive conversion step would only need to

be performed once (or only periodically), and the benefit of improved image-space synthesis

efficiency could more fully be realized. Another consideration for Method 4 is its

demanding memory allocation requirements: Nc
2(R − 1) different weight images of size [Nx

× Ny] must be stored and accessed during reconstruction, compared to the same number of

smaller [dx × dy] k-space kernels required for Method 3. Although in this work we did not

explicitly look at memory issues, it is worth noting that reconstruction pathways such as

Method 4 may also impact memory requirements, especially as Nc and R increase.

The other split-domain method, indicated by the thick upward arrow in Fig. 6 labeled

Method 5, performs the calibration phase in k-space and the synthesis phase in hybrid-space,

with a negligible weight conversion step in between. Method 5 offers the most efficient

reconstruction pathway for a majority of imaging applications by exploiting the

computational efficiency afforded by the combination of k-space calibration and hybrid-

space synthesis, while retaining the ability to reconstruct nonuniform sampling patterns,

such as datasets with ACS lines included.

It should be clear that Fig. 6 is not an exhaustive list of all possible CCDD pathways but

merely the most practical ones. For example, calibration and synthesis could conceivably

both be performed in image-space; however, this would require the direct calculation of

reconstruction weights for each image-space location, increasing the size of the matrix

inversion problem to a prohibitively large size.

The flexibility of CCDD reconstruction to perform the calibration and synthesis phases in

any data domain challenges the conventional wisdom that CCDD is exclusively a “k-space

method.” CCDD reconstruction was shown to perform with equivalent accuracy in k-space

(kx, ky), hybrid-space (x, ky), and image-space (x, y). Thus it is not that CCDD reconstruction

is performed in a particular data space that distinguishes it from other methods but rather the

data-driven nature of the CCDD reconstruction model itself. For instance, while Method 4

bears a resemblance to SENSE in that the unaliasing step is performed in image-space, the
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reconstructed image quality has been shown to vary significantly due to inherent calibration

differences between physically-based and data-driven methods (27).

The results presented here demonstrate that reconstruction accuracy and efficiency varies

considerably among CCDD reconstruction methods. Whereas the original 1D neighborhood

k-space-based reconstruction (Method 1) was the most efficient method, it resulted in

considerable residual aliasing for the configurations tested, presumably due to inadequate

mathematical modeling of the underlying physical system. Calculating unique 1D

neighborhood reconstruction weights at each x-location in hybrid-space (Method 2A)

allowed for the possibility of weight variation over the x-direction, but poor system

conditioning gave rise to noisy, low quality reconstructions. While reconstruction accuracy

for Method 2A could be improved in practice by acquiring more ACS lines, this would

reduce calibration phase efficiency as well as net acceleration. Expanding Method 2 to

segmented calibration (Method 2B) improved image quality considerably without impacting

net acceleration; however, there remained the possibility of signal discontinuities at the

junctions between segments. These discontinuities could potentially be avoided by using an

overlapping segment approach followed by interpolation (19), although this approach was

not tested in this work.

Smoothly varying hybrid-space calibration (Method 2C) related the weights along x to one

another in a continuous manner, offering improved image quality but slightly increased

calibration complexity. While only one type of basis function was employed here, Method

2C may offer additional benefits because the choice of basis function can be flexibly

adjusted to satisfy a particular parameter or configuration. Methods 3–5 produced the

highest image quality by extending the reconstruction model to include a second dimension

of coil sensitivity while still being highly overdetermined. Among Methods 3–5, Method 5

was shown to have the least computational cost due to its efficient application of weights in

hybrid-space during data synthesis.

While split-domain methods such as Method 5 improve synthesis phase efficiency, the

calibration phase cost to calculate 2D k-space neighborhood weights can represent a

disproportionately large part of total reconstruction cost, resulting in diminished net

computational benefit. This scenario highlights the need for techniques to alleviate the

calibration phase burden to further speed up overall reconstruction. Recently, Beatty et al.

(28) have demonstrated a new implementation for improving calibration phase efficiency

that can be incorporated with split-domain methods for added gains in net reconstruction

speed.

This work investigated five basic categories of CCDD methods; however, due to space

considerations, some variations proposed in the literature were omitted. For example, non-

shift-invariant k-space-based reconstructions that segment the reconstruction along kx (25) or

kx and ky (29) have been demonstrated. For these and other cases, the qualitative imaging

results and computational expense predictions reported above may be extrapolated to

provide a general assessment of reconstruction accuracy and efficiency.
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In Table 1, CCDD reconstruction cost was shown to grow proportionally with several

imaging and system parameters, including image size, reduction factor, and the square of the

number of coils. These relationships should help predict how computational complexity

would scale as these parameters are varied. In particular, the squared computational

dependence on the number of coils will become an increasingly important consideration

with the availability of high-channel systems capable of supporting greater number of coils

and higher accelerations.

CONCLUSIONS

This work compared various CCDD methods in order to identify their relative merits for a

given imaging application. We showed that by treating the calibration and synthesis phases

as discrete steps in the CCDD reconstruction, each step could be independently optimized

for accuracy and/or efficiency. The choice of data domain in which each step occurs can be

flexibly tailored to a given application, enabling split-domain approaches such as Methods 4

and 5. Method 5 was shown to combine the accuracy of a 2D k-space neighborhood

calibration with the efficiency of a 1D neighborhood reconstruction in hybrid-space,

offering image quality and computational advantages over previous techniques. This

evaluation of the accuracy and efficiency tradeoffs associated with various CCDD

reconstruction pathways may help guide the selection of appropriate PI reconstruction

methods for a particular imaging task.
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FIG. 1.
a: Example data acquisition pattern in which k-space data from each of four coils is

accelerated by acquiring every other phase-encode line (R = 2). Additional ACS lines are

acquired in the central k-space region, forming the fully sampled calibration region denoted

II. The outer k-space regions, denoted I, are undersampled by reduction factor R. b–f:
Spatial representation of the reconstruction weights generated by Methods 1–5, assuming

the sampling pattern in a. The green dots represent the linear combination weights that are

applied to source data at the corresponding locations in the same data space to synthesize

data on a single coil at the location indicated by the magenta dot. b: Method 1 uses a 1D

neighborhood of width Dy in the ky-direction that can be calculated in either (x, ky) or (kx, ky)

space. c: In Method 2, unique 1D neighborhood reconstruction weights are calculated for

each x-location in hybrid (x, ky) space. d: Method 3 extends the reconstruction to a 2D k-

space neighborhood of size [Dy × dx]. e: Method 4 begins with the same 2D k-space weights

as Method 3, then zero-pads to full size and performs a 2DFT to transform the weights into

(x, y) image space. f: Method 5 also begins with a 2D k-space weights, then zero-pads to full

size in kx, followed by a 1DFT to transform the weights into hybrid (x, ky) space such that a

unique set of weights exists at each x-location.
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FIG. 2.
(left column) Images generated using five different CCDD reconstruction methods on the

same 1D-accelerated brain phantom dataset (R = 3). (right column) Reconstruction error

images (window/level decreased by 10×). a, f: Method 1. b, g: Method 2A. c, h: Method

2B. d, i: Method 2C. e, j: Methods 3, 4, and 5 generated identical images. Phase-encode

direction is horizontal, and ACS lines were removed from the final images.
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FIG. 3.
(left column) Images reconstructed using five different CCDD methods on the 1D-

accelerated 3D abdominal dataset (R = 2). (right column) Reconstruction error images

(window/level decreased by 5×). a, f: Method 1. b, g: Method 2A. c, h: Method 2B. d, i:
Method 2C. e, j: Methods 3, 4, and 5 generated identical images. Phase-encode direction is

vertical, and ACS lines were removed from the final images.
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FIG. 4.
Representative reconstruction weights for the dataset in Fig. 2 are plotted vs. x-position for

different CCDD methods. Method 1 weights exhibit no dependence on x (horizontal line),

Method 2A weights fluctuate with each increment in x, Method 2B weights display a

segmented dependence on x (Nseg = 8), whereas Method 2C and 5 weights exhibit smooth,

low-frequency spatial variation over x. [Color figure can be viewed in the online issue,

which is available at http://www.interscience.wiley.com.]
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FIG. 5.
a: Average measured computation time required to reconstruct a single-slice of a 124-slice

dataset is plotted vs. dx, the neighborhood width in the kx-direction, using Methods 3 and 5.

b: Measured reconstruction times to reconstruct the weight conversion (if applicable) and

synthesis phase only. Dataset was acquired and reconstructed with the same parameters as

the brain phantom in Fig. 2. [Color figure can be viewed in the online issue, which is

available at http://www.interscience.wiley.com.]
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FIG. 6.
Flowchart illustrating various possible CCDD reconstruction pathways. Data domains are

indicated vertically and reconstruction phases progress from left to right. The estimated

computational expense for each step is indicated within each processing block, using the

numerical examples from Table 1. The central horizontal pathway (Method 3) represents the

conventional approach of performing the entire reconstruction in k-space. The reconstruction

can also be performed entirely in hybrid-space, as indicated by the top horizontal pathway

(Method 2C), which offers a more efficient synthesis phase than Method 3. The thick

downward array illustrates “split-domain” Method 4, whereby calibration is performed in k-

space and synthesis is performed efficiently image-space, with a costly weight conversion

step in between. The other split-domain method, indicated by the thick upward arrow

(Method 5), performs the calibration phase in k-space and the synthesis phase in hybrid-

space, with a negligible weight conversion step in between. [Color figure can be viewed in

the online issue, which is available at http://www.interscience.wiley.com.]
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